
SSF𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒2𝐹𝑙𝑢𝑖𝑑𝑆ℎ𝑎𝑑𝑒𝑟𝑈𝑡𝑖𝑙
Release 0.0.3

Feb 07, 2020

Contents

1 Introduction 3
1.1 Basic Setup . 6
1.2 Step By Step Usage . 6
1.3 Debug Tips . 8

2 Advance Topics 11
2.1 Extend Particle Inputs . 11
2.2 Surface Shading . 13

3 API 15
3.1 SSF_ParticleSource . 15
3.2 SSF_TextureGenerator . 15
3.3 SSF_RenderSurface . 17

4 Indices and tables 19

i

ii

SSF𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒2𝐹𝑙𝑢𝑖𝑑𝑆ℎ𝑎𝑑𝑒𝑟𝑈𝑡𝑖𝑙, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.3

This is a Unity shader plugin, not a fluid physics simulation plugin. It is used to render particle data into a smooth
liquid surface. It is suitable for rendering simulation systems that use particles as simulation units.

It has the following very good properties:

• Excellent real-time operation efficiency

• Excellent surface effect

• Open data customization interface

• Complete documentation and improvement guidelines

Contents 1

SSF𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒2𝐹𝑙𝑢𝑖𝑑𝑆ℎ𝑎𝑑𝑒𝑟𝑈𝑡𝑖𝑙, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.3

2 Contents

CHAPTER 1

Introduction

This is a Unity shader plugin, not a fluid physics simulation plugin. It is used to render particle data into a smooth
liquid surface. It is suitable for rendering simulation systems that use particles as simulation units.

Note: The principle of this plugin is based on the paper Screen Space Rendering With Curvature
Flow.

Fluid simulation is generally based on grids or particles. In consideration of real-time performance, the SPH-based
method (a particle-based method) is still used.

Unity does not have a very suitable fluid rendering plugin, which is the main reason for this plugin. I also noticed that
there is indeed an implementation based on the same principle on the Asset Store.

In the process of using, I feel that I can do better, no matter from the efficiency or visual effects or ease of use and
scalability, thus this plugin was born.

Note: This plugin is developed on Unity 2019.3.0f5 (64-bit) version and supports Unity Builtin Shader System and
Unity URP System. It runs more efficiently on the Unity Builtin Shader System and is not optimized for URP.

Warning: OnRenderObject needs to be supported. It cannot run on LWRP.

I prepared several demo scenarios:

Note: By default, the Gameobject named Renderer is off on each demo, enable it to see the effects. If still not
work, reactive the ParticleSource GameObject and Renderer Gameobject.

3

SSF𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒2𝐹𝑙𝑢𝑖𝑑𝑆ℎ𝑎𝑑𝑒𝑟𝑈𝑡𝑖𝑙, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.3

Fig. 1: [DEMO] Load particles from file

Fig. 2: [DEMO] Blood

4 Chapter 1. Introduction

SSF𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒2𝐹𝑙𝑢𝑖𝑑𝑆ℎ𝑎𝑑𝑒𝑟𝑈𝑡𝑖𝑙, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.3

Fig. 3: [DEMO] Single ParticleSystem

Fig. 4: [DEMO] Multiple ParticleSystems

5

SSF𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒2𝐹𝑙𝑢𝑖𝑑𝑆ℎ𝑎𝑑𝑒𝑟𝑈𝑡𝑖𝑙, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.3

1.1 Basic Setup

First you need to download this from the Unity Asset Store Plugin.

Then, import this plugin and you will find demos in Scene Folder .

You can choose to open any Demo such as Demo_File.scene, and then enable Renderer, you can see the effect
of the plugin in the scene.

You can also continue to read this article to understand the process of using the plugin from scratch.

1.2 Step By Step Usage

1.2.1 Setup Scene

1. Create an empty Scene named SSF_Test

2. Create a ParticleSystem and deactivate its Renderer function

3. Create an empty Object named Renderer

The Inspector should looks like:

Add SSF_LoadParticlesFromParticleSystem. The Inspector should appears as follows:

1. Assign shader and the ParticleSystem just as follows:

2. Disable and then enable the Component to take effect.

3. Now Toggle on Visualize, black spheres can be viewed in the Scene Window and Game Window.

6 Chapter 1. Introduction

https://domain.invalid/

SSF𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒2𝐹𝑙𝑢𝑖𝑑𝑆ℎ𝑎𝑑𝑒𝑟𝑈𝑡𝑖𝑙, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.3

Note: Visualize works only for debug purpose, it will not affect the proper workflow functionality.

1.2.2 Cofigure Renderer

1. Move on to the Inspector of the Renderer in hierachy

2. Click Add Component, Add SSF_TextureGenerator. This should be many missing values in the inpsector.
Assign as follows:

3. Disable and then enable the Component to take effect. Component of type SSF_RenderSurface should be
automatically added.

The meaning and effect of parameters can be checked in API

1.2.3 Congratulations!

From Scene View, fluid-like shape can already be viewed .

1.2. Step By Step Usage 7

SSF𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒2𝐹𝑙𝑢𝑖𝑑𝑆ℎ𝑎𝑑𝑒𝑟𝑈𝑡𝑖𝑙, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.3

It’s not cool enough, right?

1.2.4 Check Other Cool Demos

Now it’s time too check other cool demos!

1.3 Debug Tips

The overall workflow of this plugin can be separated into 3 parts:

• Particles Data Input

• Texture Generating

• Surface Shading

Here are some useful tips for users when using this plugin:

1. On anything regarding Graphics Changes (e.g. Saving/Exiting Scene, Saving Shader. . .), the ComputeBuffer
used to generate textures will be discarded.

2. Under all situations, the first step to debug is to check if ParticleSource was assigned on
SSF_TextureGenerator

3. If assigned, toggle On checkVisualize of SSF_TextureGenerator and check TextureOutputs.

4. If there’s colored output on EyeSpaceNormalTex, then problems exist on the surface shading part.

5. If none, it could be two possible reasons during Texture Generating:

1. ParticleSource is not providing data properly.

2. ComputeBuffer is lost for some reasons (may due to scene saving and loading).

8 Chapter 1. Introduction

SSF𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒2𝐹𝑙𝑢𝑖𝑑𝑆ℎ𝑎𝑑𝑒𝑟𝑈𝑡𝑖𝑙, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.3

This first reason may due to users’ buggy coding.

To tackle down the second reason, you have to first reactive ParticleSource, then reactive
SSF_TextureGenerator.

Note: Here, reactive means exactly Disable and then Enable

1.3. Debug Tips 9

SSF𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒2𝐹𝑙𝑢𝑖𝑑𝑆ℎ𝑎𝑑𝑒𝑟𝑈𝑡𝑖𝑙, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.3

10 Chapter 1. Introduction

CHAPTER 2

Advance Topics

In this chapter, guidance on modifying this plugin will be demonstrated. Besides, customizing surface shading will
also be covered. A little bit knowledge about parameter tuning may be included.

2.1 Extend Particle Inputs

Considering that users may have their own source of particle data, such as a particle solution system running in parallel
with the GPU, or imported pre-made particle data, here we will explain how to extend the input of particle data.

In SSF Particle2Fluid ShaderUtil (SSF) ,the input of particles is implemented by the base class
SSF_ParticleSource .

2.1.1 Particle Data Struct

The structure of particle data in SSF is as follows:

public struct SSF_particle
{

public Vector3 position;
public Color color;
public float radius;

}

Note: If you modify the particle’s data structure, you need to pay attention to replacing 32 in particleBuffer =
new ComputeBuffer (getParticleNum (), 32); in SSF_ParticleSource.cs with the number of bytes
of particle data. At the same time, corresponding changes should be made in DepthColorThickness.shader
and NoiseShader.shader.

11

SSF𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒2𝐹𝑙𝑢𝑖𝑑𝑆ℎ𝑎𝑑𝑒𝑟𝑈𝑡𝑖𝑙, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.3

2.1.2 Explain SSF_ParticleSource

The input and update of extended data is to create a new class inheriting from SSF_ParticleSource and imple-
ment the corresponding virtual function.

The following two member variables exist in SSF_ParticleSource:

protected ComputeBuffer particleBuffer;// Buffer sent to GPU
protected SSF_particle[] particlesData;// Particle Data for above buffer

Where particleBuffer is used to provide data to SSF_TextureGenerator to generate related textures for
rendering.

You can notice that the following member function modifiers in SSF_ParticleSource are public virtual:

• setupParticleBufferData ()

• updateParticleBufferData ()

In setupParticleBufferData , particlesData needs to be created and assigned, and updated in
updateParticleBufferData () , neither of these operations need to involve particleBuffer.

2.1.3 Example

The simplest example is SSF_LoadParticlesFromFile.cs.

public class SSF_LoadParticlesFromFile : SSF_ParticleSource
{

public UnityEngine.Object particleFile;
public float particleRadius;
public Color particleColor;
[Range(0,2)]
public int positionOrder_0=0;
[Range(0,2)]
public int positionOrder_1=2;
[Range(0,2)]
public int positionOrder_2=1;

public override void setupParticleBufferData()
{

base.setupParticleBufferData();
if (particleFile != null)
{

TextAsset asset = particleFile as TextAsset;
string[] striparr = asset.text.Split(new string[] { "\r\n", " " },

→˓StringSplitOptions.RemoveEmptyEntries);
particle_num = striparr.Length / 3;
print("Loaded particles : " + particle_num);
particlesData = new SSF_particle[particle_num];
for (int i = 0; i < particle_num; i++)
{

particlesData[i].position = new Vector3(Convert.
→˓ToSingle(striparr[3 * i+positionOrder_0]),

Convert.ToSingle(striparr[3 * i + positionOrder_1]), Convert.
→˓ToSingle(striparr[3 * i + positionOrder_2]));

particlesData[i].radius = particleRadius;
particlesData[i].color = particleColor;

}

(continues on next page)

12 Chapter 2. Advance Topics

SSF𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒2𝐹𝑙𝑢𝑖𝑑𝑆ℎ𝑎𝑑𝑒𝑟𝑈𝑡𝑖𝑙, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.3

(continued from previous page)

}
}
public override void updateParticleBufferData()
{

base.updateParticleBufferData();
}

}

You can also refer to SSF_LoadParticlesFromParticleSystem, this is a bit complicated and tedious.

2.2 Surface Shading

In previous asset, Surface Shading has lots of limitations:

• achieved by ImageEffects on Camera, which is no longer supported in URP.

• do not work well when there are transparent objects in scene.

• do not support mulitiple lights and global illumination.

In a word, it limits as it’s just some sort of imageEffects.

In our implementation, we reconstruct the fluid surface from textures using quads of different resolutions (or
dimensions).

Based on that, Amplify Shader Editor was used to write a surface shader Fluid Surface.shader for that surface.
Therefore the rendering process of fluid surface can be integrated into Unity’s Rendering Pipeline.

2.2.1 Textures Description

To understand how to change surface shading, textures generated from SSF_TextureGenerator should be un-
derstood.

Textures Name Texture For-
mat

Description

DepthTexture R origin depth of particles in ViewSpace
ThicknessTexture R describes how thick the fluid is from ViewSpace
NoiseTexture R used to peturb surface normal and add Foam effect, ViewSpace
SmoothedDepthTextureR smoothed depth of particles in ViewSpace
EyeSpaceNormalTextureRGBA fluid surface normal generated from SmoothedDepthTexture in

ViewSpace
EyeSpacePosTexture RGBA fluid surface position generated from SmoothedDepthTexture

in ViewSpace

2.2.2 Surface Shader

It’s already described that surface is created from a quad mesh.

On enabling the SSF_TextureGenerator, two things happen simultaneously.

• a script called SSF_RenderSurface will be attached.

2.2. Surface Shading 13

SSF𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒2𝐹𝑙𝑢𝑖𝑑𝑆ℎ𝑎𝑑𝑒𝑟𝑈𝑡𝑖𝑙, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.3

• a GameObject which is the Surface Mesh will be attached as the child of ParticleSource of
SSF_TextureGenerator

Note: Tuning the parameters of SSF_RenderSurface and SSF_TextureGenerator to ajust surface appear-
ance .

Through opening the Fluid Surface.shader, the graph flow can be viewed.

advance_topics/../images/Shader_Graph.png

We mainly do following things:

1. render mesh as transparent object

2. replace the quad’s vertices’ positions and normals with fluid surface normal and vertices.

3. sample from ThickenessTexture to set opacity

4. sample from ThickenessTexture and use Lambert-Beer Law to set Specular

5. take fluid’s Index of Refraction into Consideration and set Refraction

6. sample from NoiseTexture to peturb normal and add Foam Effect

7. sample from ColorTexture to set Albedo port

Note: It’s recommended to open the Fluid Surface.shader using Amplify Shader Editor.

For customization purposes, you can copy this shader and make your customization.

Then assign the shader as the Shader Input to SSF_RenderSurface.

14 Chapter 2. Advance Topics

CHAPTER 3

API

Code Logics are clear when viewing project codes. API parts of Docs seen to be unnecessary.

However this chapter is about parameter tuning which should also cover some part of API.

Thus let us start script by script.

3.1 SSF_ParticleSource

This class has been explained clearly in Extend Particle Inputs

This class provides data to SSF_TextureGenerator for generating textures.

Note: SSF_TextureGenerator uses the transform of SSF_ParticleSource as the model matrix for par-
ticles, please ensure it’s your expected model matrix.

Note: Thus, if using multiple particleSystem, the simulationSpace should be setted to World and this script
should be attached to a gameObject with Identity transform.

3.2 SSF_TextureGenerator

SSF_TextureGenerator forks particleBuffer from ParticleSource and then generate Textures for further sur-
face reconstruction and shading.

Its working logic can be summarized as follow:

void OnEnable()
{

(continues on next page)

15

SSF𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒2𝐹𝑙𝑢𝑖𝑑𝑆ℎ𝑎𝑑𝑒𝑟𝑈𝑡𝑖𝑙, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.3

(continued from previous page)

print("[SSF] Enabled TextureGenerator "+ gameObject.name);
setupTextures();
setupMaterials();
// Add Surface Mesh and shading if not exists.
if(GetComponent<SSF_RenderSurface>()==null){

gameObject.AddComponent<SSF_RenderSurface>();
}
GetComponent<SSF_RenderSurface>().enabled = true;
// Set shading's texsource from this
GetComponent<SSF_RenderSurface>().tex_source = this;

}
void OnDisable()
{

print("[SSF] Disabled TextureGenerator "+ gameObject.name);
releaseTextures();
releaseBuffers();
DestroyImmediate(material_depthColorThickness);
DestroyImmediate(material_noise);
//Disable Surface Shading
if(GetComponent<SSF_RenderSurface>()!=null){
GetComponent<SSF_RenderSurface>().enabled = false;
}

}

Then Draw Textures On Each Frame:

void OnRenderObject()
{

if (particleSource != null)
{

particleSource.updateParticleBuffer();
setParams();
check_debugVisualize();
drawColorTexture();
drawDepthTexture();
drawThicknessTexture();
smoothDepthTexture();
drawNoiseTexture();
drawNormalViewDirTexture();

}
}

3.2.1 Param Tuning

smoothIterations Describes how many smoothing operations each frame, normally 50-120 is suitable

smothed_dt Describes the timestep dt for each smothing operation, normally 5e-4 is suitable

estimated_dz_t From some sense, it amplifies the smoothing effect of above params, normally 1000

thicknessAmplifier Controls thicknessTexture’s output magnitude

basicNoiseTex Render each Particle with a basicNoiseTex, generate a noiseTexture for fluid shading

noiseAmplifier Controls noiseTexture’s output magnitude

textureSize Controls the Texture Size of Texture ouput with textureSize*textureSize

16 Chapter 3. API

SSF𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒2𝐹𝑙𝑢𝑖𝑑𝑆ℎ𝑎𝑑𝑒𝑟𝑈𝑡𝑖𝑙, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.3

debug_visualize If toggle on, it will copy *Texture_ouput to *Texture_debug for debug purposes. This
requires two kinds of textures share the same format and dimension.

fluid_surface_meshes Array of Plane meshes with different resolutions, corresponding to surfaceQuality in
SSF_RenderSurface

3.3 SSF_RenderSurface

This script is used to ajust the surface shading appearance and quality.

The logic is straight forward.

When enabled:

1. it creates a plane mesh (according to surfaceQuality)

2. set the mesh as the child of the ParticleSource, which ensures visablity.

3. attach FluidSurface Shader to that mesh and ajust params as setted.

3.3.1 Param Tuning

shader shader used to reconstruct surface and rendering.

fluid_ior controls the Index of Refration of fluid, water is 1.333

surfaceQuality Fluid Surface Subdivision Level,corresponding to fluid_surface_meshes in
SSF_TextureGenerator.

min/max_specular: control specular of fluid surface, as the specular is generated based on Lambert-Beer Law

3.3. SSF_RenderSurface 17

SSF𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒2𝐹𝑙𝑢𝑖𝑑𝑆ℎ𝑎𝑑𝑒𝑟𝑈𝑡𝑖𝑙, 𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.0.3

smoothness controls Reflectivity,0 is roughest,1 is smoothest

transperancy controls opacity based on thickness, 0 is transparent, 1 is fully non-transparent

min/max_opacity: controls the bounds of opacity, 0 is transparent, 1 is fully non-transparent

noiseStrength controls the significance of Foam Effect and Normal Peturbition.

18 Chapter 3. API

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

19

	Introduction
	Basic Setup
	Step By Step Usage
	Debug Tips

	Advance Topics
	Extend Particle Inputs
	Surface Shading

	API
	SSF_ParticleSource
	SSF_TextureGenerator
	SSF_RenderSurface

	Indices and tables

