

Welcome to SSF Particle2Fluid Shader Util’s documentation!

This is a Unity shader plugin, not a fluid physics simulation plugin. It is used to render particle data into a smooth liquid surface.
It is suitable for rendering simulation systems that use particles as simulation units.

It has the following very good properties:

	Excellent real-time operation efficiency

	Excellent surface effect

	Open data customization interface

	Complete documentation and improvement guidelines

[image: _images/comparision.png]

	Introduction
	Basic Setup

	Step By Step Usage

	Debug Tips

	Advance Topics
	Extend Particle Inputs

	Surface Shading

	API
	SSF_ParticleSource

	SSF_TextureGenerator

	SSF_RenderSurface

Indices and tables

	Index

	Module Index

	Search Page

Introduction

This is a Unity shader plugin, not a fluid physics simulation plugin. It is used to render particle data into a smooth liquid surface.
It is suitable for rendering simulation systems that use particles as simulation units.

Note

The principle of this plugin is based on the paper Screen Space Rendering With Curvature Flow.

Fluid simulation is generally based on grids or particles. In consideration of real-time performance, the SPH-based method (a particle-based method) is still used.

Unity does not have a very suitable fluid rendering plugin, which is the main reason for this plugin. I also noticed that there is indeed an implementation based on the same principle on the Asset Store.

In the process of using, I feel that I can do better, no matter from the efficiency or visual effects or ease of use and scalability, thus this plugin was born.

Note

This plugin is developed on Unity 2019.3.0f5 (64-bit) version and supports Unity Builtin Shader System and Unity URP System. It runs more efficiently on the Unity Builtin Shader System and is not optimized for URP.

Warning

OnRenderObject needs to be supported. It cannot run on LWRP.

I prepared several demo scenarios:

[image: ../_images/Demo_File.PNG]
[DEMO] Load particles from file

[image: ../_images/Demo_Blood.PNG]
[DEMO] Blood

[image: ../_images/Demo_Single_ParticleSystem.PNG]
[DEMO] Single ParticleSystem

[image: ../_images/Demo_Multiple_ParticleSystem.PNG]
[DEMO] Multiple ParticleSystems

Note

By default, the Gameobject named Renderer is off on each demo, enable it to see the effects. If still not work, reactive the ParticleSource GameObject and Renderer Gameobject.

	Basic Setup

	Step By Step Usage
	Setup Scene

	Cofigure Renderer

	Congratulations!

	Check Other Cool Demos

	Debug Tips

Basic Setup

First you need to download this from the Unity Asset Store Plugin [https://domain.invalid/].

Then, import this plugin and you will find demos in Scene Folder .

You can choose to open any Demo such as Demo_File.scene, and then enable Renderer, you can see the effect of the plugin in the scene.

You can also continue to read this article to understand the process of using the plugin from scratch.

Step By Step Usage

Setup Scene

	Create an empty Scene named SSF_Test

	Create a ParticleSystem and deactivate its Renderer function

	Create an empty Object named Renderer

	The Inspector should looks like:

	[image: ../_images/workflow_-1.PNG]

	Add SSF_LoadParticlesFromParticleSystem.

	The Inspector should appears as follows:

[image: ../_images/workflow_0.PNG]

	Assign shader and the ParticleSystem just as follows:

[image: ../_images/workflow_1.PNG]

	Disable and then enable the Component to take effect.

	Now Toggle on Visualize, black spheres can be viewed in the Scene Window and Game Window.

Note

Visualize works only for debug purpose, it will not affect the proper workflow functionality.

Cofigure Renderer

	Move on to the Inspector of the Renderer in hierachy

	Click Add Component, Add SSF_TextureGenerator. This should be many missing values in the inpsector.
Assign as follows:

[image: ../_images/workflow_2.PNG]

	Disable and then enable the Component to take effect.
Component of type SSF_RenderSurface should be automatically added.

The meaning and effect of parameters can be checked in API

Congratulations!

From Scene View, fluid-like shape can already be viewed .

[image: ../_images/workflow_3.PNG]
It’s not cool enough, right?

Check Other Cool Demos

Now it’s time too check other cool demos!

Debug Tips

The overall workflow of this plugin can be separated into 3 parts:

	Particles Data Input

	Texture Generating

	Surface Shading

Here are some useful tips for users when using this plugin:

	On anything regarding Graphics Changes (e.g. Saving/Exiting Scene, Saving Shader…), the ComputeBuffer used to generate textures will be discarded.

	Under all situations, the first step to debug is to check if ParticleSource was assigned on SSF_TextureGenerator

	If assigned, toggle On checkVisualize of SSF_TextureGenerator and check TextureOutputs.

	If there’s colored output on EyeSpaceNormalTex, then problems exist on the surface shading part.

	If none, it could be two possible reasons during Texture Generating:

	ParticleSource is not providing data properly.

	ComputeBuffer is lost for some reasons (may due to scene saving and loading).

This first reason may due to users’ buggy coding.

To tackle down the second reason, you have to first reactive ParticleSource, then reactive SSF_TextureGenerator.

Note

Here, reactive means exactly Disable and then Enable

Advance Topics

In this chapter, guidance on modifying this plugin will be demonstrated. Besides, customizing surface shading will also be covered. A little bit knowledge about parameter tuning may be included.

	Extend Particle Inputs
	Particle Data Struct

	Explain SSF_ParticleSource

	Example

	Surface Shading
	Textures Description

	Surface Shader

Extend Particle Inputs

Considering that users may have their own source of particle data, such as a particle solution system running in parallel with the GPU, or imported pre-made particle data, here we will explain how to extend the input of particle data.

In SSF Particle2Fluid ShaderUtil (SSF) ,the input of particles is implemented by the base class SSF_ParticleSource .

Particle Data Struct

The structure of particle data in SSF is as follows:

public struct SSF_particle
{
 public Vector3 position;
 public Color color;
 public float radius;
}

Note

If you modify the particle’s data structure, you need to pay attention to replacing 32 in particleBuffer = new ComputeBuffer (getParticleNum (), 32); in SSF_ParticleSource.cs with the number of bytes of particle data. At the same time, corresponding changes should be made in DepthColorThickness.shader and NoiseShader.shader.

Explain SSF_ParticleSource

The input and update of extended data is to create a new class inheriting from SSF_ParticleSource and implement the corresponding virtual function.

The following two member variables exist in SSF_ParticleSource:

protected ComputeBuffer particleBuffer;// Buffer sent to GPU
protected SSF_particle[] particlesData;// Particle Data for above buffer

Where particleBuffer is used to provide data to SSF_TextureGenerator to generate related textures for rendering.

You can notice that the following member function modifiers in SSF_ParticleSource are public virtual:

	setupParticleBufferData ()

	updateParticleBufferData ()

In setupParticleBufferData , particlesData needs to be created and assigned, and updated in updateParticleBufferData () , neither of these operations need to involve particleBuffer.

Example

The simplest example is SSF_LoadParticlesFromFile.cs.

public class SSF_LoadParticlesFromFile : SSF_ParticleSource
 {
 public UnityEngine.Object particleFile;
 public float particleRadius;
 public Color particleColor;
 [Range(0,2)]
 public int positionOrder_0=0;
 [Range(0,2)]
 public int positionOrder_1=2;
 [Range(0,2)]
 public int positionOrder_2=1;

 public override void setupParticleBufferData()
 {
 base.setupParticleBufferData();
 if (particleFile != null)
 {
 TextAsset asset = particleFile as TextAsset;
 string[] striparr = asset.text.Split(new string[] { "\r\n", " " }, StringSplitOptions.RemoveEmptyEntries);
 particle_num = striparr.Length / 3;
 print("Loaded particles : " + particle_num);
 particlesData = new SSF_particle[particle_num];
 for (int i = 0; i < particle_num; i++)
 {
 particlesData[i].position = new Vector3(Convert.ToSingle(striparr[3 * i+positionOrder_0]),
 Convert.ToSingle(striparr[3 * i + positionOrder_1]), Convert.ToSingle(striparr[3 * i + positionOrder_2]));
 particlesData[i].radius = particleRadius;
 particlesData[i].color = particleColor;
 }
 }
 }
 public override void updateParticleBufferData()
 {
 base.updateParticleBufferData();
 }

 }

You can also refer to SSF_LoadParticlesFromParticleSystem, this is a bit complicated and tedious.

Surface Shading

In previous asset, Surface Shading has lots of limitations:

	achieved by ImageEffects on Camera, which is no longer supported in URP.

	do not work well when there are transparent objects in scene.

	do not support mulitiple lights and global illumination.

In a word, it limits as it’s just some sort of imageEffects.

In our implementation, we reconstruct the fluid surface from textures using quads of different resolutions (or dimensions).

Based on that, Amplify Shader Editor was used to write a surface shader Fluid Surface.shader for that surface. Therefore the rendering process of fluid surface can be integrated into Unity’s Rendering Pipeline.

Textures Description

To understand how to change surface shading, textures generated from SSF_TextureGenerator should be understood.

	Textures Name

	Texture Format

	Description

	DepthTexture

	R

	origin depth of particles in ViewSpace

	ThicknessTexture

	R

	describes how thick the fluid is from ViewSpace

	NoiseTexture

	R

	used to peturb surface normal and add Foam effect, ViewSpace

	SmoothedDepthTexture

	R

	smoothed depth of particles in ViewSpace

	EyeSpaceNormalTexture

	RGBA

	fluid surface normal generated from SmoothedDepthTexture in ViewSpace

	EyeSpacePosTexture

	RGBA

	fluid surface position generated from SmoothedDepthTexture in ViewSpace

Surface Shader

It’s already described that surface is created from a quad mesh.

On enabling the SSF_TextureGenerator, two things happen simultaneously.

	a script called SSF_RenderSurface will be attached.

	a GameObject which is the Surface Mesh will be attached as the child of ParticleSource of SSF_TextureGenerator

Note

Tuning the parameters of SSF_RenderSurface and SSF_TextureGenerator to ajust surface appearance .

Through opening the Fluid Surface.shader, the graph flow can be viewed.

[image: advance_topics/../images/Shader_Graph.png]
We mainly do following things:

	render mesh as transparent object

	replace the quad’s vertices’ positions and normals with fluid surface normal and vertices.

	sample from ThickenessTexture to set opacity

	sample from ThickenessTexture and use Lambert-Beer Law to set Specular

	take fluid’s Index of Refraction into Consideration and set Refraction

	sample from NoiseTexture to peturb normal and add Foam Effect

	sample from ColorTexture to set Albedo port

Note

It’s recommended to open the Fluid Surface.shader using Amplify Shader Editor.

For customization purposes, you can copy this shader and make your customization.

Then assign the shader as the Shader Input to SSF_RenderSurface.

API

Code Logics are clear when viewing project codes.
API parts of Docs seen to be unnecessary.

However this chapter is about parameter tuning which should also cover some part of API.

Thus let us start script by script.

	SSF_ParticleSource

	SSF_TextureGenerator
	Param Tuning

	SSF_RenderSurface
	Param Tuning

SSF_ParticleSource

This class has been explained clearly in Extend Particle Inputs

This class provides data to SSF_TextureGenerator for generating textures.

Note

SSF_TextureGenerator uses the transform of SSF_ParticleSource as the model matrix for particles, please ensure it’s your expected model matrix.

Note

Thus, if using multiple particleSystem,
the simulationSpace should be setted to World and
this script should be attached to a gameObject with Identity transform.

SSF_TextureGenerator

SSF_TextureGenerator forks particleBuffer from ParticleSource
and then generate Textures for further surface reconstruction and shading.

Its working logic can be summarized as follow:

void OnEnable()
{
 print("[SSF] Enabled TextureGenerator "+ gameObject.name);
 setupTextures();
 setupMaterials();
 // Add Surface Mesh and shading if not exists.
 if(GetComponent<SSF_RenderSurface>()==null){
 gameObject.AddComponent<SSF_RenderSurface>();
 }
 GetComponent<SSF_RenderSurface>().enabled = true;
 // Set shading's texsource from this
 GetComponent<SSF_RenderSurface>().tex_source = this;
}
void OnDisable()
{
 print("[SSF] Disabled TextureGenerator "+ gameObject.name);
 releaseTextures();
 releaseBuffers();
 DestroyImmediate(material_depthColorThickness);
 DestroyImmediate(material_noise);
 //Disable Surface Shading
 if(GetComponent<SSF_RenderSurface>()!=null){
 GetComponent<SSF_RenderSurface>().enabled = false;
 }
}

Then Draw Textures On Each Frame:

void OnRenderObject()
{
 if (particleSource != null)
 {
 particleSource.updateParticleBuffer();
 setParams();
 check_debugVisualize();
 drawColorTexture();
 drawDepthTexture();
 drawThicknessTexture();
 smoothDepthTexture();
 drawNoiseTexture();
 drawNormalViewDirTexture();
 }
}

Param Tuning

	smoothIterations

	Describes how many smoothing operations each frame, normally 50-120 is suitable

	smothed_dt

	Describes the timestep dt for each smothing operation, normally 5e-4 is suitable

	estimated_dz_t

	From some sense, it amplifies the smoothing effect of above params, normally 1000

	thicknessAmplifier

	Controls thicknessTexture’s output magnitude

	basicNoiseTex

	Render each Particle with a basicNoiseTex, generate a noiseTexture for fluid shading

	noiseAmplifier

	Controls noiseTexture’s output magnitude

	textureSize

	Controls the Texture Size of Texture ouput with textureSize*textureSize

	debug_visualize

	If toggle on, it will copy *Texture_ouput to *Texture_debug for debug purposes.
This requires two kinds of textures share the same format and dimension.

	fluid_surface_meshes

	Array of Plane meshes with different resolutions, corresponding to surfaceQuality in SSF_RenderSurface

SSF_RenderSurface

This script is used to ajust the surface shading appearance and quality.

The logic is straight forward.

When enabled:

	it creates a plane mesh (according to surfaceQuality)

	set the mesh as the child of the ParticleSource, which ensures visablity.

	attach FluidSurface Shader to that mesh and ajust params as setted.

Param Tuning

[image: ../_images/SSF_RenderSurface.png]

	shader

	shader used to reconstruct surface and rendering.

	fluid_ior

	controls the Index of Refration of fluid, water is 1.333

	surfaceQuality

	Fluid Surface Subdivision Level,corresponding to fluid_surface_meshes
in SSF_TextureGenerator.

	min/max_specular:

	control specular of fluid surface, as the specular is generated based on Lambert-Beer Law

	smoothness

	controls Reflectivity,0 is roughest,1 is smoothest

	transperancy

	controls opacity based on thickness, 0 is transparent, 1 is fully non-transparent

	min/max_opacity:

	controls the bounds of opacity, 0 is transparent, 1 is fully non-transparent

	noiseStrength

	controls the significance of Foam Effect and Normal Peturbition.

Index

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to SSF Particle2Fluid Shader Util’s documentation!

 		
 Introduction

 		
 Basic Setup

 		
 Step By Step Usage

 		
 Setup Scene

 		
 Cofigure Renderer

 		
 Congratulations!

 		
 Check Other Cool Demos

 		
 Debug Tips

 		
 Advance Topics

 		
 Extend Particle Inputs

 		
 Particle Data Struct

 		
 Explain SSF_ParticleSource

 		
 Example

 		
 Surface Shading

 		
 Textures Description

 		
 Surface Shader

 		
 API

 		
 SSF_ParticleSource

 		
 SSF_TextureGenerator

 		
 Param Tuning

 		
 SSF_RenderSurface

 		
 Param Tuning

_images/comparision.png
& s [} , . o
. 0N =
raw particle data smoothed fluid surface with shading

_static/ajax-loader.gif

_images/SSF_RenderSurface.png
¥ #| SSF_Render Surface (Script)

Script enderSurface

Shader s/FluidSurface

Fluid Surface Subdivision Level
Surface Quality

Fluid Basics
Fluid_jor 1.333
Reflectivity

Min_specular 0.1
Max_specular 0.3
Smoothness 0
Opacity

Transperancy 1
Min_opacity 9
Max_opacity 0.5
Foam

Noise Strength 1

